U.S. Geological Survey News Feed

Loon Migration Underway, Prompted by Frigid Temperatures

U.S. Geological Survey News Feed - November 20, 2014 - 3:00pm
Summary: As freezing air swept into the Upper Midwest this past week, juvenile common loons took a cue from the weather and began their migrations to the warm Gulf of Mexico Follow the Birds Online

Contact Information:

Kevin Kenow ( Phone: 608-781-6278 ); Randy Hines ( Phone: 608-781-6398 ); Marisa Lubeck ( Phone: 303-202-4765 );



As freezing air swept into the Upper Midwest this past week, juvenile common loons took a cue from the weather and began their migrations to the warm Gulf of Mexico. 

By this past Monday, eight young loons, recently tagged by the U.S. Geological Survey and partners, had reached the Gulf of Mexico from the midwestern United States, and eight were en route to southern wintering areas. The scientists captured and radiomarked the juvenile common loons on lakes scattered across Minnesota and Wisconsin during the last two weeks of August 2014 to study the challenges facing these birds during their first two years, when they are most vulnerable.

“Midwest loons are susceptible to avian botulism in the Great Lakes and pollution found in U.S. waters during migration and overwintering,” said Kevin Kenow, USGS lead scientist for the study. “Resource managers need information on the iconic birds’ first critical years to develop effective conservation strategies.” 

Common loons are large, black-and-white, fish-eating waterbirds with haunting calls and are bioindicators, or living gages of ecosystem health, in the Great Lakes states. The survival rate of loons during their first few years of life – about 50 percent over three years – is much lower than that of adults, which have a rate of about 93 percent annually.

“Satellite transmitter and geolocator tag technologies help us learn more about the movements, habitat use and causes of mortality of young common loons, and ultimately about the health of the overall food web,” Kenow said. 

The tracking devices record daily location, temperature, light levels and pressure data used to log the foraging depths of these diving birds.

Previous band recovery data suggested that while some common loons may remain on wintering grounds year-round their first two years, there is the potential for a northward movement up the Atlantic Coast during summers. Watch where the new loons travel this year via the USGS common loon migration website.

For more information on USGS loon studies, please visit the USGS Upper Midwest Environmental Sciences Center website.

VideoUnraveling Mysteries of the Common Loon

"Teddy Bear" Unlikely to Go Extinct

U.S. Geological Survey News Feed - November 19, 2014 - 11:00am
Summary: The bear species nicknamed “teddy” more than a century ago that inspired the iconic stuffed toy still popular today will likely survive at least another century, according to a new U.S. Geological Survey study USGS study looks at Louisiana Black Bear Population

Contact Information:

Joseph  Clark ( Phone: 865-974-4790 ); Christian Quintero ( Phone: 813-498-5019 );



A threatened Louisiana black bear and her cubs up in a tree. (High resolution image)

The bear species nicknamed “teddy” more than a century ago that inspired the iconic stuffed toy still popular today will likely survive at least another century, according to a new U.S. Geological Survey study

The threatened Louisiana black bear, one of 18 subspecies of black bear in North America, has less than a 1 percent chance of going extinct in the next 100 years.  The bear was once found throughout Louisiana, eastern Texas, southern Arkansas and western Mississippi. Habitat loss and overhunting has since reduced and fragmented the population resulting in its listing as threatened under the Endangered Species Act in 1992.

The species was nicknamed the “teddy bear” in 1902 when President Theodore “Teddy” Roosevelt famously refused to shoot a tethered bear while on a hunting trip.

To determine the viability of the bear population today, researchers used projections of population growth over time based on capture and radio-telemetry data to estimate the bear’s extinction probability. In some instances, scientists captured and released the bears to obtain the data, while other times they collected DNA extracted from hair samples to identify individual bears. The study also used genetics and capture data to evaluate how frequently individual bears move between the fragmented subpopulations of Louisiana black bear in the Lower Mississippi Alluvial Valley. Connectivity among subpopulations of a species is important to help avoid genetic problems resulting from too much inbreeding. These findings address goals created in 1995 by the U.S. Fish and Wildlife Service for recovery.

“Estimates of a species’ viability can help wildlife managers determine the status of threatened, endangered or at-risk species and guide effective management efforts,” said Joseph Clark, the USGS research ecologist who led the study in collaboration with Jared Laufenberg from the University of Tennessee. “This study will be used by the U.S. Fish and Wildlife Service to determine whether to pursue removing the bear from the ‘threatened’ species list.”

Researchers collected data with DNA sampling, live capture, winter den visits and monitoring of radio-collared animals from 2002 to 2014. To collect the DNA samples, researchers set up barbed wire fences that bears had to cross to obtain pastry baits. This method, which does not harm the bears, results in the bears leaving their DNA in the form of hair samples on the barbs, which scientists are able to use to identify the individual identities of each bear visiting the site.   

Bears in Louisiana primarily exist in four distinct subpopulations, and data were sufficient for researchers to perform viability analyses on three of them. The probability of these bears not going extinct ranged from 29.5 percent to greater than 99 percent, depending on the subpopulation and the assumptions upon which the models were based.  However, the chances that all of the subpopulations will simultaneously go extinct, based on the most conservative models, were only 0.4 percent. The researchers also found that individual bears were moving among some subpopulations.

“The completion of this project represents many years of collaborative work and we’re excited about the results,” said Maria Davidson, Louisiana Department of Wildlife and Fisheries biologist program manager.  “The information provided by this project is based on the best available science, enabling us to make management decisions focused on the long term sustainability of the Louisiana black bear.”

Since originally being listed as threatened in 1992, the Louisiana black bear population has grown and the habitat has recovered to the extent that the U.S. Fish and Wildlife Service is considering “delisting,” or removing the bear from the threatened species list. This population growth is because of state and federal protection of the bears, a reintroduction project and habitat recovery aided by the Federal Conservation Reserve Program and the Federal Wetlands Reserve Program.

This study was completed in cooperation with Louisiana Department of Wildlife and Fisheries, U.S. Fish and Wildlife Service, University of Tennessee and Louisiana State University, among others. The full study is available online.

USGS-NASA Award Recognizes Innovations in Earth Observation

U.S. Geological Survey News Feed - November 18, 2014 - 6:00pm
Summary: A pioneer in mapping global land cover change and the team behind the United States’ most advanced land surface mapping satellite have both been honored with the 2014 William T. Pecora Award for achievement in Earth remote sensing

Contact Information:

Jon Campbell ( Phone: 703-648-4180 );



A pioneer in mapping global land cover change and the team behind the United States’ most advanced land surface mapping satellite have both been honored with the 2014 William T. Pecora Award for achievement in Earth remote sensing. Sponsored by the Department of the Interior's U.S. Geological Survey (USGS) and NASA, the annual award was presented on Nov. 18 in Denver at the 19th William T. Pecora Memorial Remote Sensing Symposium. 

Christopher O. Justice, professor and chair of geographical sciences at the University of Maryland, College Park, was honored for advancing the understanding of the Earth by means of remote sensing. The government and industry team that built and now operates Landsat 8, the latest in the Landsat series of satellites, was also acknowledged for their contributions to study of Earth’s land surface and coastal regions. 

Landsat 8, launched as the Landsat Data Continuity Mission in February 2013, provides frequent global medium-resolution data for science and applications. Landsat 8 extends the unprecedented Landsat data record which now covers more than four decades. 

Justice has made numerous scientific contributions to the study of land use and land cover change and the detection and analysis of wildfires, expanding the use of Earth-observing data from NASA’s Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. 

An innovator in the use of global daily polar orbiter satellite data for mapping and monitoring land cover, Justice provided the vision that led to the first global 1-km data Advanced Very High Resolution Radiometer (AVHRR) dataset. He leads long-term monitoring of the Congo Basin using Landsat data, an effort that provides invaluable information on the state of the forests of central Africa. 

Justice is perhaps best known for his research on wildfires. First using AVHRR data and now MODIS and VIIRS, he successfully developed algorithms for fire detection and burned area estimation. He spearheaded the development of a rapid response system that reveals the location of fires shortly after images are obtained. This system has provided significant practical benefits in many parts of the world and is regularly used in the strategic deployment of fire-fighting assets. 

Justice now leads agricultural monitoring efforts. With colleagues from NASA and the U.S. Department of Agriculture, he leads the development of a system for forecasting agricultural production based primarily on MODIS data. He is working on transitioning the system to use VIIRS data to ensure longer-term continuity. 

The Landsat 8 Team is a partnership between USGS  and NASA with strong contributions from industry and the academic community. The Landsat 8 Project Office at NASA’s Goddard Space Flight Center in Greenbelt, Md., oversaw development and launch of the satellite. The USGS Earth Resources Observation and Science Center in Sioux Falls, South Dakota, managed ground system development and assumed operation of the mission following in-orbit commissioning. 

Landsat 8’s Thermal Infrared Sensor (TIRS) was built at NASA Goddard. Ball Aerospace & Technology Corporation was responsible for the Operational Land Imager (OLI). Orbital Sciences Corporation built the spacecraft, and United Launch Alliance provided the Atlas 2 launch vehicle. The Landsat Science Team of university and government scientists provided scientific and technical input to a wide range of mission activities. 

The Landsat 8 Team met the challenge of continuing and advancing the Landsat legacy of observations. The OLI sensor on Landsat 8 is a substantial technical advancement over the Thematic Mapper sensors flown since 1982 on Landsats 4, 5, and 7. In addition, the TIRS instrument utilizes a two-band thermal infrared sensor to more effectively address atmospheric contamination in the thermal infrared spectrum. Mission performance has exceeded expectations, providing more imagery, higher quality measurements, and new capabilities over previous missions.  

The Pecora Award was established in 1974 to honor the memory of a former USGS director and Interior undersecretary. William T. Pecora was influential in the establishment of the Landsat satellite program, which created a continuous record of Earth's land areas spanning a period of more than 40 years.

 

Southern Beaufort Sea Polar Bear Population Declined in the 2000s

U.S. Geological Survey News Feed - November 17, 2014 - 2:00pm
Summary: In a new polar bear study published today, scientists from the United States and Canada found that during the first decade of the 21st century, the number of polar bears in the southern Beaufort Sea experienced a sharp decline of approximately 40 percent

Contact Information:

Paul Laustsen ( Phone: 650-329-4046 ); Yvette  Gillies ( Phone: 907-786-7039 );



ANCHORAGE, Alaska — In a new polar bear study published today, scientists from the United States and Canada found that during the first decade of the 21st century, the number of polar bears in the southern Beaufort Sea experienced a sharp decline of approximately 40 percent.  

The scientists, led by researchers at the U.S. Geological Survey, found that survival of adult bears and cubs was especially low from 2004 to 2006, when most of the decline occurred. 

“Of the 80 cubs observed in Alaska from 2004 to 2007, only 2 are known to have survived,” said Jeff Bromaghin, USGS research statistician and lead author of the study. 

Survival of adults and cubs began to improve in 2007 and the population stabilized at approximately 900 bears in 2010, the last year of the study. However, the survival of juvenile bears declined throughout the 10-year study period (2001-2010), suggesting that conditions remained unfavorable for young bears newly separated from their mothers.

Scientists suspect that limited access to seals during both summer and winter contributed to low survival during this period. Although some bears in this population now come onshore during the autumn open water period, most stay with the sea ice as it retreats north into the Arctic Basin and far from shore where few seals are thought to occur. Similarly, the thinning and increasingly mobile winter ice is susceptible to breaking up and rafting, which can create rough and jumbled ice conditions that may make it harder for polar bears to capture seals. However, other potential causes, such as low seal abundance, could not be ruled out. 

“The low survival may have been caused by a combination of factors that could be difficult to unravel,” said Bromaghin, “and why survival improved at the end of the study is unknown. Research and monitoring to better understand the factors influencing this population continue.”

The Polar Bear Specialists’ Group of the International Union for the Conservation of Nature will use the new estimate for the southern Beaufort Sea population to track historic (within the last 25 years) and current (within the last 12 years) trends in the 19 populations worldwide. Currently, four populations, including the southern Beaufort Sea population, are considered to be declining, five are stable, one is increasing, with the remainder considered to be data deficient.

Collaborators with USGS in the study included Environment Canada, University of Alberta, U.S. Fish and Wildlife Service, Polar Bears International, and Western Ecosystems Technology.

The polar bear was listed as globally threatened under the Endangered Species Act in 2008 due to concerns about the effects of sea ice loss on their populations. 

The paper “Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline” was published today in early online view in the journal Ecological Applications.

 

For further information:

Learn more about USGS Quantitative Ecology program that originated this study, then visit the USGS Polar Bear program website. The USGS conducts this work under its Changing Arctic Ecosystems Initiative

Summary of polar bear population status per 2013 from the Polar Bear Specialists Group.

Multimedia

Find more polar bear photos in the USGS multimedia gallery.

Check out our polar bear POV video in the USGS multimedia gallery. 

USGS Assesses Current Groundwater-Quality Conditions in the Williston Basin Oil Production Area

U.S. Geological Survey News Feed - November 17, 2014 - 12:00pm
Summary: Energy development in the Williston Basin oil production area of Montana and North Dakota, which includes the Bakken and Three Forks Formations, has not affected shallow groundwater quality, according to a recently published study in the journal Groundwater

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 ); Rod  Caldwell ( Phone: 406-457-5933 ); Joel Galloway ( Phone: 701-250-7402 );



USGS scientist prepares to sample a domestic well in the Bakken Formation oil and gas production area of North Dakota. (High resolution image)

Energy development in the Williston Basin oil production area of Montana and North Dakota, which includes the Bakken and Three Forks Formations, has not affected shallow groundwater quality, according to a recently published study in the journal Groundwater. The paper is based on water samples collected by U.S. Geological Survey scientists from 30 randomly distributed, non-federal domestic wells screened in the upper Fort Union Formation. 

The study compared concentrations of several chemicals to health-based drinking-water standards, analyzed correlations between concentrations and oil and gas well locations and evaluated methane for indications of deep production-zone gases. 

“These results are good news for water users, and the data provide a valuable baseline against which future water-quality data can be compared,” said Peter McMahon, a USGS hydrologist and lead author of the study. “However, it is important to consider these results in the context of groundwater age.” 

Most of the sampled water was more than 1,000 years old based on carbon-14 dating and predates oil and gas development in the study area. Results suggest that shallower wells screened at the water table would be better suited for detecting contamination associated with recent surface spills than the domestic wells sampled by this study. 

Old groundwater could be directly contaminated by recent subsurface leaks from improperly cemented oil and gas wells, but groundwater velocities calculated from carbon-14 ages indicated that the contaminants, if present in groundwater, would not have moved far from their source. 

“The groundwater age results indicate that a long-term commitment to monitoring is needed to assess the effects of energy development on groundwater quality in the Williston Basin production area,” said McMahon. 

The study was the first comprehensive regional assessment of shallow groundwater quality and age in the Williston Basin production area. Inclusion of groundwater-age measurements in assessing the effects of energy development on groundwater quality is a new approach that provides valuable context for water-quality data and can lead to more effective monitoring programs.

This report is a product of the USGS Groundwater Resources Program that provides scientific information and develops interdisciplinary understanding necessary to assess and quantify the availability of the nation’s groundwater resources. Program priorities include conducting regional and national overviews, scientific assessments of critical groundwater issues, field methods and model development and improved access to fundamental groundwater data.

Who Will Come to Your Bird Feeder in 2075?

U.S. Geological Survey News Feed - November 5, 2014 - 4:06pm
Summary: The distribution of birds in the United States today will probably look very different in 60 years as a result of climate, land use and land cover changes.

Contact Information:

Marisa Lubeck ( Phone: 303-526-6694 );



The distribution of birds in the United States today will probably look very different in 60 years as a result of climate, land use and land cover changes.

A new U.S. Geological Survey study predicts where 50 bird species will breed, feed and live in the conterminous U.S. by 2075. While some types of birds, like the Baird’s sparrow, will likely lose a significant amount of their current U.S. range, other ranges could nearly double. Human activity will drive many of these shifts. The study was published today in the journal PLOS ONE.

"Habitat loss is a strong predictor of bird extinction at local and regional scales," said Terry Sohl, a USGS scientist and the author of the report. "Shifts in species’ ranges over the next several decades will be more dramatic for some bird species than others."      

Climate change will cause average temperatures to change by three degrees to seven degrees Fahrenheit by 2075, depending upon scenario and location within the conterminous U.S. Temperature increases will drive breeding ranges for many species to the north. Precipitation will increase in some regions and decline in others, resulting in substantial impacts on local and regional habitat.

Habitats for birds currently breeding in the far southern U.S., such as the desert-dwelling Gambel’s quail and cactus wren, will expand greatly by 2075 in the conterminous U.S. as a warming climate moves the overall range to the north. The chestnut-collared longspur, sharp-tailed grouse and gray partridge could all lose over 25 percent of their suitable breeding range in the northern U.S. as climate becomes more suitable in Canada for these species. The Baird’s sparrow may lose almost all of its current U.S. range.

Landscape changes resulting largely from human activity, including land use and land cover changes, will also significantly affect future U.S. bird distributions. The effects of landscape change will be more scattered, with very high loss of habitat at local and regional scales. 

"Changing landscape patterns such as deforestation and urban growth are likely to have at least as large of an impact on future bird ranges as climate change for many species," Sohl said.

The new study used climate and landscape data to create and compare U.S. distribution maps of 50 bird species in 2001 and 2075. The maps for each species are available online.

The species that will either gain or lose more than 20 percent of their conterminous U.S. ranges as compared to 2001 are:

  • Gambel’s quail: 61.8 percent gain
  • Cactus wren: 54.1 percent gain
  • Scissor-tailed flycatcher: 46.4 percent gain
  • Gray vireo: 44.9 percent gain
  • Painted bunting: 38.5 percent gain
  • Anna’s hummingbird: 27.2 percent gain
  • Black-capped chickadee: 21 percent loss
  • Ferruginous hawk: 21.2 percent loss
  • Sora: 22.8 percent loss
  • Northern harrier: 24.7 percent loss
  • Bobolink: 24.9 percent loss
  • Short-eared owl: 26.2 percent loss
  • Vesper sparrow: 26.4 percent loss
  • Savannah sparrow: 27.2 percent loss
  • Sedge wren: 29 percent loss
  • Gray partridge: 35.6 percent loss
  • Sharp-tailed grouse: 44.8 percent loss
  • Chestnut-collared longspur: 54.1 percent loss
  • Baird’s sparrow: 90.8 percent loss

For more information on species distribution modeling, please visit the USGS Earth Resources Observation and Science Center website.

National Water-Use at Lowest Levels since before 1970

U.S. Geological Survey News Feed - November 5, 2014 - 11:16am
Summary: Water use across the country reached its lowest recorded level in nearly 45 years. According to a new USGS report, about 355 billion gallons of water per day (Bgal/d) were withdrawn for use in the entire United States during 2010.

Contact Information:

Ethan Alpern ( Phone: 703-648-4406 );



Water use across the country reached its lowest recorded level in nearly 45 years. According to a new USGS report, about 355 billion gallons of water per day (Bgal/d) were withdrawn for use in the entire United States during 2010.

This represents a 13 percent reduction of water use from 2005 when about 410 Bgal/d were withdrawn and the lowest level since before 1970.

“Reaching this 45-year low shows the positive trends in conservation that stem from improvements in water-use technologies and management,” said Mike Connor, deputy secretary of the Interior.  “Even as the U.S. population continues to grow, people are learning to be more water conscious and do their part to help sustain the limited freshwater resources in the country.”


Total water withdrawals by State and barchart showing categories by State from west to east, 2010.(Larger image)

In 2010, more than 50 percent of the total withdrawals in the United States were accounted for by 12 states in order of withdrawal amounts: California, Texas, Idaho, Florida, Illinois, North Carolina, Arkansas, Colorado, Michigan, New York, Alabama and Ohio.

California accounted for 11 percent of the total withdrawals for all categories and 10 percent of total freshwater withdrawals for all categories nationwide. Texas accounted for about 7 percent of total withdrawals for all categories, predominantly for thermoelectric power, irrigation and public supply.

Florida had the largest saline withdrawals, accounting for 18 percent of the total in the country, mostly saline surface-water withdrawals for thermoelectric power. Oklahoma and Texas accounted for about 70 percent of the total saline groundwater withdrawals in the United States, mostly for mining.

“Since 1950, the USGS has tracked the national water-use statistics,” said Suzette Kimball, acting USGS director. “By providing data down to the county level, we are able to ensure that water resource managers across the nation have the information necessary to make strong water-use and conservation decisions.”

Trends in total water withdrawals by water-use category, 1950–2010.(Larger image)

Water withdrawn for thermoelectric power was the largest use nationally, with the other leading uses being irrigation, public supply and self-supplied industrial water, respectively. Withdrawals declined in each of these categories. Collectively, all of these uses represented 94 percent of total withdrawals from 2005-2010.

  • Thermoelectric power declined 20 percent, the largest percent decline.
  • Irrigation withdrawals (all freshwater) declined 9 percent.
  • Public-supply withdrawals declined 5 percent.

Self-supplied industrial withdrawals declined 12 percent. 

A number of factors can be attributed to the 20 percent decline in thermoelectric-power withdrawals, including an increase in the number of power plants built or converted since the 1970’s that use more efficient cooling-system technologies, declines in withdrawals to protect aquatic habitat and environments, power plant closures and a decline in the use of coal to fuel power plants.

"Irrigation withdrawals in the United States continued to decline since 2005, and more croplands were reported as using higher-efficiency irrigation systems in 2010,” said Molly Maupin, USGS hydrologist. “Shifts toward more sprinkler and micro-irrigation systems nationally and declining withdrawals in the West have contributed to a drop in the national average application rate from 2.32 acre-feet per acre in 2005 to 2.07 acre-feet per acre in 2010."

For the first time, withdrawals for public water supply declined between 2005 and 2010, despite a 4 percent increase in the nation’s total population. The number of people served by public-supply systems continued to increase and the public-supply per capita use declined to 89 gallons per day in 2010 from 100 gallons per day in 2005.

Declines in industrial withdrawals can be attributed to factors such as greater efficiencies in industrial processes, more emphasis on water reuse and recycling, and the 2008 U.S. recession, resulting in lower industrial production in major water-using industries.

In a separate report, USGS estimated thermoelectric-power withdrawals and consumptive use for 2010, based on linked heat- and water-budget models that integrated power plant characteristics, cooling system types and data on heat flows into and out of 1,290 power plants in the United States. These data include the first national estimates of consumptive use for thermoelectric power since 1995, and the models offer a new approach for nationally consistent estimates.

In August, USGS released the 2010 water-use estimates for California in advance of the national report. The estimates showed that in 2010, Californians withdrew an estimated total of 38 Bgal/day, compared with 46 Bgal/day in 2005.  Surface water withdrawals in the state were down whereas groundwater withdrawals and freshwater withdrawals were up. Most freshwater withdrawals in California are for irrigation.

The USGS is the world’s largest provider of water data and the premier water research agency in the federal government. 

USGS and Canada Reach Confluence in Monitoring Streamflow

U.S. Geological Survey News Feed - November 4, 2014 - 9:56am
Summary: In a joint effort, the U.S. Geological Survey and the Water Survey of Canada (WSC) have produced the North America WaterWatch (NAWW), an online website that displays streamflow conditions throughout much of North America. 

Contact Information:

Robert Mason, USGS ( Phone: 703-648-5305 ); Lingling Liu, WSC ( Phone: 613- 790-5151 ); Jon Campbell, USGS ( Phone: 703-648-4180 );



In a joint effort, the U.S. Geological Survey and the Water Survey of Canada (WSC) have produced the North America WaterWatch (NAWW), an online website that displays streamflow conditions throughout much of North America. 

The site provides a fast, easy-to-use, cartographically-based, central web interface for users to access real-time streamflow conditions for both Canada and the United States. NAWW can be accessed online in both English and French 

"North America WaterWatch delivers easily understandable maps and graphics of streamflow conditions and, simultaneously, provides access to real-time and past streamflow data at thousands of streamgages in both nations,” said Jerad Bales, USGS Chief Scientist for Water. “The portal demonstrates the value of free exchange of water-data through interoperable web services, which is a major strategic focus of the USGS through open-water data activities."

The international collaboration was announced at the American Water Resources Association annual conference in Tysons Corner, Va. 

The NAWW site is arranged similarly to USGS Water Watch. Real-time instantaneous flow data are compared against historical daily streamflow percentiles at hydrometric monitoring stations. The stations are then color coded on the map to indicate current flow conditions in relation to normal conditions based on statistical thresholds (i.e. much below normal, below normal, normal, above normal, much above normal, and high). The timely availability of these streamflow indicators is vital to water managers and the general public, as the easily-recognized indicators constitute a direct link between hydrological field information and the assessment of risks. 

NAWW displays streamflow conditions in Canada for about 1000 real-time flow stations with more than 20 years of continuous streamflow records selected from three different data sources: the Water Survey of Canada (~ 850), Centre d'expertise hydrique du Québec (~ 100), and Alberta Environment (~ 60). Streamflow conditions in the United States are shown for roughly 8000 real-time flow stations. The data on the website are updated hourly; daily statistics are updated quarterly. 

The publishing of the NAWW website marks another milestone achieved through the cooperation between USGS and WSC.

New Maine Maps Feature National Scenic Trails

U.S. Geological Survey News Feed - October 27, 2014 - 12:00pm
Summary: Newly released US Topo maps for Maine now feature segments of the Appalachian National Scenic Trail (A.T.)

Contact Information:

Mark Newell, APR ( Phone: 573-308-3850 ); Matt Robinson ( Phone: 304-535-4010 ); Larry Moore ( Phone: 303-202-4019 );



Newly released US Topo maps for Maine now feature segments of the Appalachian National Scenic Trail (A.T.).  Several of the 715 new US Topo quadrangles for the state now display parts of the A.T. along with other improved data layers. 

“Located within a day’s drive of 2/3rds of the U.S. population and open year-around to all visitors, the Appalachian Trail is America’s most readily accessible long-distance footpath,” said Matt Robinson, National Park Service GIS Specialist for the A.T. “Having its route accurately depicted on these new US Topo maps just makes it even more accessible to all who wish to explore this great resource.” 

The Appalachian National Scenic Trail is a public footpath that traverses more than 2,100 miles of the Appalachian mountains and valleys between Katahdin, Maine (northern terminus), and Springer Mountain, Georgia (southern terminus). It winds through scenic, wooded, pastoral, wild, and culturally resonant lands along this ancient mountain range. With more than 99% of the A.T.’s corridor on Federal or State land, it is the longest continuously marked, maintained, and publicly protected trail in the United States.

The USGS partnered with the National Park Service and the Appalachian Trail Conservancy to incorporate the trail data onto the Maine US Topo maps. This NST joins the Ice Age National Scenic Trail, the Pacific Northwest National Scenic Trail the North Country National Scenic Trail and the Pacific Crest National Scenic Trail as being featured on the new US Topo quads. The USGS hopes to eventually include all National Scenic Trails in The National Map products.

These new maps replace the first edition US Topo maps for Maine and are available for free download from The National Map and the USGS Map Locator & Downloader website.

To compare change over time, scans of legacy USGS topo maps, some dating back to the late 1800s, can be downloaded from the USGS Historical Topographic Map Collection

To download US Topo maps: http://nationalmap.gov/ustopo/

The National Trails System was established by Act of Congress in 1968. The Act grants the Secretary of Interior and the Secretary of Agriculture authority over the National Trails System. The Act defines four types of trails. Two of these types, the National Historic Trails and National Scenic Trails, can only be designated by Act of Congress. National scenic trails are extended trails located as to provide for maximum outdoor recreation potential and for the conservation and enjoyment of nationally significant scenic, historic, natural, and cultural qualities of the area through which such trails may pass.

There are 11 National Scenic Trails:
  • Appalachian National Scenic Trail
  • Pacific Crest National Scenic Trail
  • Continental Divide National Scenic Trail
  • North Country National Scenic Trail
  • Ice Age National Scenic Trail
  • Potomac Heritage National Scenic Trail
  • Natchez Trace National Scenic Trail
  • Florida National Scenic Trail
  • Arizona National Scenic Trail
  • New England National Scenic Trail
  • Pacific Northwest National Scenic Trail
(high resolution image) 1951 USGS legacy topographic map of the Monson West (Maine) quadrangle, 1:62,500 scale. (high resolution image)
2014 US Topo map of Maine, Monson West quadrangle with orthoimage layer turned on. (high resolution image)

Revised Alabama Maps Feature New Design

U.S. Geological Survey News Feed - October 22, 2014 - 12:00pm
Summary: US Topo maps now have a crisper, cleaner design - enhancing readability of maps for online and printed use Newly designed US Topo maps covering Alabama are now available online for free download

Contact Information:

Mark Newell, APR ( Phone: 573-308-3850 ); Bob Davis ( Phone: 573-308-3554 );



US Topo maps now have a crisper, cleaner design - enhancing readability of maps for online and printed use. Map symbols are easier to read over the digital aerial photograph layer whether the imagery is turned on or off. Improvements to symbol definitions (color, line thickness, line symbols, area fills), layer order, and annotation fonts are additional features of this latest update. The maps also have transparency for some features and layers to increase visibility of multiple competing layers.

This new design was launched earlier this year and is now part of the new US Topo quadrangles for Alabama (840 maps), replacing the first edition US Topo maps for the states.

"Users in our state are very excited about the three year revision cycle of the US Topo maps,” said George Heleine, the Geospatial Liaison for Alabama and Mississippi.  “The Alabama Department of Transportation says that due to increased growth within the state, updated maps will significantly increase their utility across all disciplines within State Government”. 

US Topo maps are updated every three years. The initial round of the 48 conterminous states coverage was completed in September of 2012.  Hawaii and Puerto Rico maps have recently been added. Nearly 1,000 new US Topo maps for Alaska have been added to the USGS Map Locator & Downloader, but will take several years to complete.

Re-design enhancements and new features:

  • Crisper, cleaner design improves online and printed readability while retaining the look and feel of traditional USGS topographic maps
  • New functional road classification schema has been applied
  • A slight screening (transparency) has been applied to some features to enhance visibility of multiple competing layers
  • Updated free fonts that support diacritics
  • New PDF Legend attachment
  • Metadata formatted to support multiple browsers
  • New shaded relief layer for enhanced view of the terrain
  • Military installation boundaries, post offices and cemeteries
  • The railroad dataset is much more complete

The previous versions of US Topo maps for these states, published in 2011, can still be downloaded from USGS web sites. Also, scanned images of older topographic maps from the period 1884-2006 can be downloaded from the USGS Historical Topographic Map Collection. These scanned images of legacy paper maps are available for free download from The National Map and the USGS Map Locator & Downloader website

US Topo maps are created from geographic datasets in The National Map, and deliver visible content such as high-resolution aerial photography, which was not available on older paper-based topographic maps. The new US Topo maps also provide modern technical advantages that support wider and faster public distribution and on-screen geographic analysis tools for users. The new digital electronic topographic maps are delivered in GeoPDF ® image software format and may be viewed using Adobe Reader, available as a no-cost download.

For more information, go to: http://nationalmap.gov/ustopo/

2014 US Topo map of the Florence, Alabama area with the shaded relief and image layter turned on. 1914 USGS legacy topographic map of the Muscle Shoals, Alabama area.

Interior, Agriculture Departments Partner to Measure Conservation Impacts on Water Quality

U.S. Geological Survey News Feed - October 21, 2014 - 11:57am
Summary: The United States Department of the Interior (DOI) and the U.S. Department of Agriculture (USDA) announced a new partnership agreement today that will provide a clearer picture of the benefits of farmers' conservation practices on the quality of our Nation's water

Contact Information:

Ethan Alpern ( Phone: 703-648-4406 ); Michael Woodside ( Phone: 615-837-4706 );



ALTON, Ill., Oct. 21, 2014—The United States Department of the Interior (DOI) and the U.S. Department of Agriculture (USDA) announced a new partnership agreement today that will provide a clearer picture of the benefits of farmers' conservation practices on the quality of our Nation's water.  Working together, USDA's NRCS and DOI's USGS will quantify the benefits of voluntary agricultural practices at a watershed scale.  This information will strengthen the effectiveness of state and federal nutrient reduction strategies while protecting the privacy of individual farmers.  The agreement was announced at the Mississippi River Gulf of Mexico Watershed Nutrient Task Force Meeting.

“On a voluntary basis, the agricultural community has put extensive effort into the management of nutrients and reducing runoff into waterways. This collaboration will help evaluate the impact of farmers’ conservation efforts on improving water quality,” said Ann Mills, USDA’s deputy under secretary for Natural Resources and Environment.

Mills said when hundreds of farms take action in one watershed, it can make a difference—it can help prevent an algae bloom downstream or lessen the need for water treatment plants to treat for nitrates.

The U.S. Geological Survey will now use Natural Resources Conservation Service data on conservation work to factor into its surface water quality models, which track how rivers receive and transport nutrients from natural and human sources to downstream reservoirs and estuaries. This information will help provide a more accurate picture of the conservation systems in the watershed that contribute to water quality improvement and will provide crucial information for voluntary nutrient management strategies and watershed planning.

“This agreement will allow NRCS and USGS to combine resource management capabilities with science, and will give us the information we need to prioritize the most effective conservation strategies so that we can improve the quality of streams throughout the Mississippi River Basin,” said Lori Caramanian, DOI deputy assistant secretary for Water and Science.

Working together, NRCS and USGS will develop conservation intensity data sets that reflect the value of conservation actions, but do not reveal private information about individual farms, ranches or forests. Protecting the trust relationship between NRCS and farmers and their private information protected by law is vital to the continued success of voluntary conservation on private lands.

“We know our farmers are doing great work to protect our natural resources. Our goal with this partnership is to be able to better recognize these achievements and provide conservation and water quality management communities with science-based information for improving water quality,” Mills said. “Farmers invest heavily in conservation systems to improve water quality, and we want to aid their decisions with the best science and information available.”

The conservation intensity products developed through the agreement will provide a uniform representation of conservation activities for use in water quality assessments at local, regional and national scales. Technical assistance providers will therefore have the assurance that they are using consistent and accurate information on conservation activities and a common platform for discussing conservation benefits.

Nutrient runnoff from many different sources, including urban areas and industry, impacts our nation’s waterways. By providing science-based information, NRCS and USGS can help farmers decrease nutrient runoff and improve water quality for their communities and downstream.

Visit the following links to learn more about: real-time nitrate monitoring, annual and seasonal nutrient loads to the Gulf of Mexico, nutrient trends, and the Mississippi River basin nutrient model  mapper.

Learn more about NRCS’s Conservation Effects Assessment Project Cropland National Assessment and the Mississippi River Basin Healthy Watersheds Initiative.

To learn about technical and financial assistance available through conservation programs, visit www.nrcs.usda.gov/GetStarted or local USDA service center.

Seismometers to Measure DC Shaking

U.S. Geological Survey News Feed - October 14, 2014 - 1:00pm
Summary: Thirty seismometers are being installed in the Nation’s capital this winter to monitor ground tremors to better estimate the intensity of ground shaking that can be expected during future earthquakes in the area USGS and Virginia Tech Begin Installations in November

Contact Information:

Thomas  Pratt ( Phone: 206-919-8773 ); Guney  Olgun ( Phone: 540-231-2036 ); Hannah  Hamilton ( Phone: 703-314-1601 );



WASHINGTON, D.C. – Thirty seismometers are being installed in the Nation’s capital this winter to monitor ground tremors to better estimate the intensity of ground shaking that can be expected during future earthquakes in the area.

The project was announced today by U.S. Geological Survey acting director Suzette Kimball at an event at the National Building Museum promoting ShakeOut, an international earthquake drill involving more than 20 million people scheduled for Oct. 16.

“The surprising amount of damage to buildings here in Washington, D.C. during the 2011 Virginia earthquake – despite its relatively modest 5.8 magnitude and the epicenter being nearly 90 miles away – raised questions on how much seismic shaking is amplified by local geological conditions,” said Kimball.  “The installation of these seismometers should provide the information necessary to help us answer those questions and better estimate the intensity of shaking during future earthquakes in the area.”

Scientists from the USGS and Virginia Tech will begin the installations in November, locating the bowl sized sensors at various sites throughout the District of Columbia, including government facilities, parks, and private homes.

The extremely sensitive seismometers will remain in place until summer of 2015 to record weak ground shaking from distant earthquakes, as well as vibrations from regional earthquakes, quarry blasts and background noise generated by sources such as automobile traffic. The seismometers will continuously record information, with scientists periodically visiting the instruments to retrieve the data.

In time the results should provide information that will help architects and engineers mitigate the effects of future earthquakes when they design or renovate buildings in the area. Although no one can predict when the area will experience its next earthquake, the Eastern United States has the potential to experience larger, more damaging earthquakes than was experienced in 2011.

The seismometers are on loan from the Incorporated Research Institutions for Seismology, which is a consortium of more than 120 US universities and research institutions dedicated to facilitating investigations of earthquakes and Earth dynamics.

More than 450 aftershocks have been recorded since the Virginia earthquake, which was felt from central Georgia to central Maine, and west to Detroit and Chicago.  It is estimated that approximately one-third of the U.S. population could have felt the earthquake, which damaged the Washington National Cathedral and the Washington Monument.

Additional information about the earthquakes in Virginia is available online.

For more information visit the USGS Earthquake Hazard Program website.

Wind Turbine or Tree? Certain Bats Might Not Know

U.S. Geological Survey News Feed - September 29, 2014 - 5:17pm
Summary: Certain bats may be approaching wind turbines after mistaking them for trees, according to a study published in the Proceedings of the National Academy of Sciences

Contact Information:

Heidi Koontz ( Phone: 303-202-4763 ); Cris Hein ( Phone: 706-621-1975 ); Catherine Puckett ( Phone: 352-377-2469 );



Additional Contacts:  Cris Hein, Bat Conservation International, 706-621-1975, chein@batcon.org and Marcos Gorresen, Univ. of Hawaii at Hilo, 808-985-6407, mgorresen@usgs.gov

FORT COLLINS, Colorado – Certain bats may be approaching wind turbines after mistaking them for trees, according to a study published in the Proceedings of the National Academy of Sciences.

The study, led by U.S. Geological Survey scientist Paul Cryan, was the first to use video surveillance cameras to watch bats for several months flying at night near experimentally manipulated wind turbines and led to the discovery that tree-roosting bats, or “tree bats,” may approach and interact with wind turbines in consistent and predictable ways. 

Bats are long-lived, slow-breeding mammals that serve as the main predators of night flying insects, such as moths and beetles. Insect-eating bats are estimated to save farmers billions of dollars each year in the United States by providing natural pest control. Historically, fatal collisions of bats and tall, human-made structures were rarely observed, but something changed with the construction of large, industrial wind turbines. It is now estimated that tens to hundreds of thousands of bats die each year after interacting with the moving blades of wind turbines. Most tree bats are found dead beneath turbines in late summer and autumn, yet reasons for this seasonal susceptibility remain a mystery – unknown behaviors of bats may play a role.  

"If we can understand why bats approach wind turbines, we may be able to turn them away," said Paul Cryan, a USGS research scientist and the study’s lead author. "Advances in technology helped us overcome the difficulties of watching small bats flying in the dark around the 40-story heights of wind turbines. The new behaviors we saw are useful clues in the quest to know how bats perceive wind turbines and why they approach them."  

The researchers used ‘thermal’ cameras that image heat instead of light, and they recorded surveillance imagery of bats for several months at three wind turbines in Indiana. The team also monitored the nighttime airspace around turbines with near-infrared security cameras, radar and machines that record the ultrasonic calls of bats, as well as developed computer code for automatically finding bats in the hundreds of hours of recorded video imagery. Over the period of the study, bats were seen on video near turbines more than 900 times. 

Bats typically approached turbines one or more times rather than just flying past, and bats often flew very close to the turbine monopoles, nacelles (machinery boxes at top of monopoles) and sometimes approached stationary or slow-moving blades. At the same time, radar indicated that hundreds of night-migrating birds were flying above and around the turbines nightly, but not closely approaching like bats.    

The most surprising discovery was that bats more often approached wind turbines high above the ground and from the downwind side when the wind was blowing. This strong pattern strengthened as wind speed increased and when turbine blades were experimentally prevented from turning at full speed, but decreased in high winds when turbine blades spun normally. Bats also appeared at turbines more often during brightly moonlit nights. The authors concluded from these patterns that bats might follow airflow paths around tree-like structures and use visual cues at night, but may not be able to tell a tree from a wind turbine with slow or stopped blades.

"The way bats approach turbines suggests they follow air currents and use their dim-adapted vision to find and closely investigate tall things shaped like trees," said Marcos Gorresen, an author of the study and scientist with the University of Hawaii at Hilo. "We see these behaviors less often on darker nights and when fast-moving turbine blades are creating chaotic downwind turbulence. This may be because bats are less likely to mistake turbines for trees and approach them in those conditions."

Previous studies indicated that bat fatalities at wind turbines might occur more often on nights with low average wind speeds. The authors speculate that bats may be more likely to approach turbines in such conditions when turbines have airflow patterns resembling trees, but then might be put at risk if wind speed rapidly increases and pushes turbine blades to speeds faster than bats can perceive or outmaneuver.

Although these new findings revealed bats closely investigating most parts of the turbines, the study could not determine their reasons for doing so. The authors wonder if bats might expect to find roosts, clouds of insect prey or other bats at turbines as they might at trees, regardless of whether such resources actually occur at wind turbines. Little is known about the behaviors of bats or insects around tall trees during late summer and autumn, but the authors write that studying treetop behaviors in natural environments might help explain why bats are particularly susceptible to wind turbines.  

The new findings also have practical implications toward the goal of reducing or avoiding bat fatalities at wind turbines. A current method of reducing bat fatalities at wind turbines is to increase the wind speed threshold at which turbine blades begin operating and spinning fast. “It might be possible to efficiently further reduce fatalities with this method by accounting for sporadic gusts of wind during low-wind periods when bats might be hanging around turbines,” said Cris Hein, an author of the study and scientist with Bat Conservation International. The findings also suggest that pointing monitoring or deterrent devices into the downwind airspace of a turbine might have better chances of detecting or keeping bats away than if they are pointed elsewhere.

The authors conclude that increasing our understanding of the ways that bats perceive and approach wind turbines helps in the search for solutions to reduce the effects of this important energy source on bat populations. More information about this study and additional bat research is available online at the USGSFort Collins Science CenterBat Conservation International and Bats and Wind Energy Cooperative.

Past, Present and Future Climates Go Hand in Hand with Tribes

U.S. Geological Survey News Feed - September 25, 2014 - 4:38pm
Summary: Collaboration between federal Climate Science Centers, partner agencies and tribes is vital for minimizing and adapting to potential harmful effects of climate change on human society and surrounding ecosystems, according to a newly-released U.S. Geological Survey circular

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 ); Catherine Puckett ( Phone: 352-377-2469 );



Collaboration between federal Climate Science Centers, partner agencies and tribes is vital for minimizing and adapting to potential harmful effects of climate change on human society and surrounding ecosystems, according to a newly-released U.S. Geological Survey circular.

“All eight of our Climate Science Centers are working closely with tribal nations to develop the practical science they need," said Anne Castle, DOI Assistant Secretary for Water and Science, "and we are looking forward to the addition of five new BIA tribal liaison positions within the CSC network to help bring climate science results directly to tribal governments.” 

The South Central CSC provides climate science training and science tools that can help tribes assess their natural and cultural resource vulnerabilities and develop adaptation strategies. The circular also provides resources related to funding opportunities, climate science resources and partnership contacts.  

Eight Climate Science Centers were established by the U.S. Department of the Interior between 2010 and 2012 to increase understanding of climate change and coordinate an effective response to climate change effects on the natural and cultural resources that DOI manages.  

“It is our intent to share climate change mitigation and adaptation information with tribes and to receive feedback from tribal members regarding how ecosystems and cultural resources can be maintained as climate changes,” said Kim Winton, USGS scientist and director of the SC CSC.

The SC CSC gives natural resource managers the science, tools and information they need to mitigate and adapt to the effects of climate variability and change on their areas of responsibility. The mission of the Climate Science Center is to produce “actionable science,” or science that can be utilized to make resource management decisions such as responding to drought, fire, invasive species and other environmental issues. 

This new USGS circular describes issues of interest to the 68 Native American tribes in the south-central United States, the programs and initiatives of the SC CSC and means of sharing climate science knowledge with tribes in the south central United States. 

“Through two-way communication of interests, knowledge and concern about climate change and related issues, the needs of tribes in the south central United States will be better served, and interpretation of the effects of climate change in this region will be strengthened,” said Winton.

Captive Whooping Cranes Released Into the Wild

U.S. Geological Survey News Feed - September 23, 2014 - 4:18pm
Summary: Four whooping crane chicks raised in captivity began their integration into the wild Saturday as part of the continuing effort to increase the wild population of this endangered species Efforts continue to increase population of endangered bird

Contact Information:

John  French ( Phone: 301-452-0497 ); Christian Quintero ( Phone: 813-498-5019 );



NECEDAH, Wis. – Four whooping crane chicks raised in captivity began their integration into the wild Saturday as part of the continuing effort to increase the wild population of this endangered species.

The cranes, hatched and raised by their parents at the U.S. Geological Survey’s Patuxent Wildlife Research Center in Laurel, Maryland, were released on the U.S. Fish and Wildlife Service’s Necedah National Wildlife Refuge in Wisconsin.

The chicks, about six-months old, are part of an experimental rearing and release method referred to as “parent-rearing.”  The parent-reared whooping crane chicks were hatched and raised by captive adult whooping cranes. This method relies entirely on the expertise of captive parents, who care for, exercise, and feed the chicks.

These chicks will join a flock of about 95 cranes that inhabit wetlands on the refuge and elsewhere in central Wisconsin during the spring and summer.  The flock is composed of cranes reintroduced into the wild in order to establish a migratory flock of whooping cranes in the eastern United States.  The Eastern Migratory Flock flies south to wetlands in the Southeast United States for the winter.  The USGS Patuxent Wildlife Research Center also raises chicks for release into a newly established non-migratory flock in the wetlands of Southwest Louisiana.

“Over the past 13 years, USGS biologists – dressed in costumes to avoid having the birds “imprint” on people -- have raised between five and 20 whooping crane chicks annually that have been released into the Eastern Migratory Flock,” said John French, leader of the USGS whooping crane project at Patuxent.  “This new method of allowing captive adult cranes rear the chicks prior to release into the wild is intended to evaluate the effects of rearing by humans in costume, which is obviously an odd condition.  Parent rearing may result in the chicks learning behavior important to their survival and reproduction.”

While the parent-rearing method has been used previously with sandhill cranes in Mississippi and whooping cranes in Florida, this is only the second year it has been attempted with a migratory population. 

“Our refuge has a long history of helping with the successful reintroduction of endangered or threatened bird species to the area,” said Doug Staller, Necedah National Wildlife Refuge manager. “Necedah is the summer home for the bulk of the Eastern Migratory Flock of whooping cranes, some of which are breeding, and provides a unique and important opportunity to learn more about these endangered birds. It was only natural for us to be involved in the parent rearing effort.”

The parent-reared chicks arrived at Necedah NWR Saturday, where they were housed in separate predator resistant enclosures to provide them a safe place for chicks to roost while they acclimated to their new surroundings near other free-ranging whooping cranes.

The pens are located in the vicinity of pairs of adult whooping cranes without chicks of their own.  Such pairs have a tendency to adopt other chicks, and when adopted, will lead them south during migration, which begins at the end of October.

In addition to the four parent-reared chicks released at Necedah NWR, seven costumed-reared whooping crane chicks will join the eastern migratory flock this year as well.  The chicks were raised in captivity by costumed handlers and have been imprinted on an ultralight aircraft.  They will earn the migration route by following the ultralight from White River Marsh in Wisconsin to the Gulf Coast of Florida.  More information on the migration will be available when it begins in October.

All of the releases of whooping cranes in Wisconsin add to the Eastern Migratory Flock, a reintroduction project undertaken by a broad coalition of Federal, state, and NGO partners belonging to the Whooping Crane Eastern Partnership.

At one point in the past, researchers believe the Whooping crane population dropped to fewer than two-dozen birds.  Today the population is estimated to be approximately 425 in the wild, with another 125 in captivity.

  

We Will Rock You - Geologic Map Day

U.S. Geological Survey News Feed - September 23, 2014 - 11:00am
Summary: Celebrate the third annual Geologic Map Day! On October 17, as a part of the Earth Science Week 2014 activities, join leading geoscience organizations in promoting awareness of the importance of geologic mapping to society The U.S. Geological Survey is partnering with the American Geosciences Institute, the Association of American State Geologists and others to promote the importance of geologic mapping to society.

Contact Information:

Douglas Howard ( Phone: 703-648-6978 ); Geoff Camphire, AGI ( Phone: 703-379-2480, x216 ); Mark Newell, APR ( Phone: 573-308-3850 );



Celebrate the third annual Geologic Map Day! On October 17, as a part of the Earth Science Week 2014 activities, join leading geoscience organizations in promoting awareness of the importance of geologic mapping to society.

Geologic maps are vital to education, science, business, and public policy concerns. Geologic Map Day will focus the attention of students, teachers, and the general public on the study, uses, and significance of these tools, by engaging audiences through educational activities, print materials, online resources, and public outreach opportunities.

Be sure to check out the Geologic Map Day poster included in this year’s Earth Science Week Toolkit. The poster and other materials in the kit show how geologic maps can be used to understand natural hazards as well as providing step-by-step instructions for a related classroom activity focusing on the Grand Canyon. Additional resources for learning about geologic maps can be found on the Geologic Map Day web page.

Geologic Map Day partners include the American Geosciences Institute (AGI), the Association of American State Geologists, the U.S. Geological Survey, the National Park Service, the Geological Society of America, and Esri.

To learn more, please visit www.earthsciweek.org/. To order your Toolkits, please visit www.earthsciweek.org/materials/. You may also call AGI Publications to place your order at 703-379-2480. 

For more information, go to:  http://www.earthsciweek.org/geologicmap/

Geologic map of the conterminous United States at 1:2,500,000 scale. (High resolution image)

Streamgages Measure Drought, Earthquake Impacts on Water

U.S. Geological Survey News Feed - September 16, 2014 - 4:00pm
Summary: While the national streamflow database is documenting evidence of California’s historic drought, the database is also confirming another recently seen hydrologic phenomenon: earthquake-induced increases in streamflow

Contact Information:

Laurel  Rogers ( Phone: 619-980-6527 ); Leslie  Gordon ( Phone: 650-329-4006 );



Hydrograph showing stream flow in cubic feet per second on USGS streamgage on Sonoma Creek near Agua Caliente, from about August 23 - September 13, 2014. The sharp rise starting on August 24 reflects an increased streamflow due to the South Napa Earthquake. (High resolution image) Hydrograph showing stream flow in cubic feet per second on USGS streamgage on Sonoma Creek near Agua Caliente, from April 1 - mid-September, 2014. The steady decline in streamflow reflects current drought conditions in California. The sharp decrease and increase aroundAugust 1 is a regional trend, reflecting an upstream irrigation diversion.The sharp rise starting on August 24 reflects an increased streamflow due to the South Napa Earthquake. (High resolution image) Hydrograph showing an increase of gage-height in feet (.01 increments) at the Sonoma Creek at Agua Caliente gage, in the early morning of August 24, 2014. The sharp rise in water level between 4:15 - 4:30 a.m. reflects an increased streamflow due to the South Napa Earthquake an hour earlier. (High resolution image)

SACRAMENTO, Calif. — While the national streamflow database is documenting evidence of California’s historic drought, the database is also confirming another recently seen hydrologic phenomenon: earthquake-induced increases in streamflow.

Rivers and streams across California are flowing at record lows. Streamflow data from 182 U.S. Geological Survey streamgages in California with at least 30 years of record, currently show that 62 percent of streamgages are recording flows less 25 percent of normal, and 44 percent are recording flows less than 10 percent of normal. At several streamgage sites, scientists have had to extend measurement scales and rating formulas that help calculate accurate streamflow, because of record low water flows.

Increased flow over rock riffle in Sonoma Creek seen after South Napa Earthquake of August 24, 2014. (High resolution image)

Meanwhile, in the aftermath of the August 24 magnitude 6.0 South Napa Earthquake in California, water has begun to flow again in some previously-dry surrounding creeks, rivers and streams prompting many nearby residents to scratch their heads.

Hydrogeologic responses to earthquakes have been known by scientists for decades. In the case of the South Napa Earthquake, the discharge of springs and groundwater to some streams has increased. Based on experience in previous earthquakes, stream and spring flows are expected to decline again over the next several months, assuming that the Napa region does not get significant rainfall over that time period.

Post-earthquake changes in streamflow were recorded at a USGS streamgage on Sonoma Creek, near the city of Sonoma where measured increases in streamflow began after 4:15 a.m. on August 24, about an hour after the earthquake occurred. Streamflow has increased intermittently since the earthquake from 0.1 cubic feet per second to nearly 3 cfs on September 12. The median historical streamflow for this time period is about 0.5 cfs. Scientists theorize that this increase in streamflow is due to groundwater flow entering the river, and the intermittent nature of the streamflow is due to the non-uniform release of groundwater across the basin. 

Related Links and Resources

Media Advisory: USGS to Host Congressional Briefing: #StrongAfterSandy--The Science Supporting the Department of the Interior's Response

U.S. Geological Survey News Feed - September 15, 2014 - 1:06pm
Summary: Department of the Interior scientists are generating and sharing critical information to aid the recovery of the areas impacted by Hurricane Sandy, helping to protect our valuable coastal resources and to make communities more resilient against future extreme storms

Contact Information:

Hannah Hamilton ( Phone: 703-648-4356 (work) 703-314-1601 (cell) );



Department of the Interior scientists are generating and sharing critical information to aid the recovery of the areas impacted by Hurricane Sandy, helping to protect our valuable coastal resources and to make communities more resilient against future extreme storms. Moving forward DOI is positioned to help answer questions such as: What locations along the coast are forecasted to be the most vulnerable to future hurricanes? What were the storm impacts to ecosystems, habitats, fish and wildlife? What is being learned about the importance of undeveloped land? Come learn how the U.S. Geological Survey and its partners are working to assemble and apply better data to keep citizens safe.

Speakers:

  • Neil K. Ganju –  Research Oceanographer, U.S. Geological Survey
  • Mary Foley – Regional Chief Scientist, Northeast Region, National Park Service
  • Eric Schrading – New Jersey Field Office Supervisor,  U.S. Fish and Wildlife Service

Emcee:

Claude Gascon, Executive Vice President and Chief Science Officer, National Fish and Wildlife Foundation

Where:

Rayburn House Office Building, Room 2325, Washington, D.C.

When:

Friday, September 19, 2014 – 11:00 a.m.

Host:

Refreshments provided courtesy of the National Fish and Wildlife Foundation

To learn how USGS is combining interdisciplinary science with state-of-the-art technologies to achieve a comprehensive understanding of coastal change caused by Hurricane Sandy, read our new fact sheet: Using Science to Strengthen our Nation’s Resilience to Tomorrow’s Challenges—Understanding and Preparing for Coastal Impacts.

New Oregon Maps Feature National Scenic Trails

U.S. Geological Survey News Feed - September 15, 2014 - 1:00pm
Summary: Newly released US Topo maps for Oregon now feature segments of the Pacific Crest National Scenic Trail

Contact Information:

Mark Newell, APR ( Phone: 573-308-3850 ); Larry  Moore ( Phone: 303-202-4019 );



Newly released US Topo maps for Oregon now feature segments of the Pacific Crest National Scenic Trail. Several of the 1,835 new US Topo quadrangles for the state now display parts of the Trail along with other improved data layers.

“Having the Pacific Crest NST finally show up on Oregon US Topo maps is significant for all of the recreational users of the wild spaces the trail traverses,” said Tom Carlson, Geospatial Liaison for the Pacific Northwest. “Hiking the trail provides commanding views of the volcanic peaks of the Cascade Range as well as the verdant forests of the western side of the mountains and down into the farmlands of the Willamette Valley. You also see parts of the open Ponderosa Pine forest and high desert on the eastern slopes of the mountains.”

The Pacific Crest National Scenic Trail is a treasured pathway through some of the most scenic terrain in the nation. Beginning in southern California at the Mexican border, the PCT travels a total distance of 2,650 miles through California, Oregon, and Washington until reaching the Canadian border. The PCT is one of the original National Scenic Trails established by Congress in the 1968 National Trails System Act and fifty-four percent of the trail lies within designated wilderness.

The USGS partnered with the U.S. Forest Service to incorporate the trail onto the Oregon US Topo maps. This NST joins the Ice Age National Scenic Trail, the Pacific Northwest National Scenic Trail and the North Country National Scenic Trail as being featured on the new US Topo quads. The USGS hopes to eventually include all National Scenic Trails in The National Map products. 

These new maps replace the first edition US Topo maps for Oregon and are available for free download from The National Map and the USGS Map Locator & Downloader website.

Another important addition to the new Oregon US Topo maps in the inclusion of Public Land Survey System. PLSS is a way of subdividing and describing land in the US. All lands in the public domain are subject to subdivision by this rectangular system of surveys, which is regulated by the U.S. Department of the Interior.

To compare change over time, scans of legacy USGS topo maps, some dating back to the late 1800s, can be downloaded from the USGS Historical Topographic Map Collection

To download US Topo maps: http://nationalmap.gov/ustopo/

The National Trails System was established by Act of Congress in 1968. The Act grants the Secretary of Interior and the Secretary of Agriculture authority over the National Trails System. The Act defines four types of trails. Two of these types, the National Historic Trails and National Scenic Trails, can only be designated by Act of Congress. National scenic trails are extended trails located as to provide for maximum outdoor recreation potential and for the conservation and enjoyment of nationally significant scenic, historic, natural, and cultural qualities of the area through which such trails may pass.

There are 11 National Scenic Trails:
  • Appalachian National Scenic Trail
  • Pacific Crest National Scenic Trail
  • Continental Divide National Scenic Trail
  • North Country National Scenic Trail
  • Ice Age National Scenic Trail
  • Potomac Heritage National Scenic Trail
  • Natchez Trace National Scenic Trail
  • Florida National Scenic Trail
  • Arizona National Scenic Trail
  • New England National Scenic Trail
  • Pacific Northwest National Scenic Trail
(high resolution image) New 2014 US Topo quadrangle of the Three Fingered Jack, Oregon, area. Scale 1:24,000, with the orthoimagery layer turned on. (high resolution image) Scanned copy of the 1929 USGS Three Sister’s, Oregon, quadrangle. Scale 1:25,000 – from the USGS Historical Topographic Map Collection. (high resolution image)

20-Year Study Shows Levels of Pesticides Still a Concern for Aquatic Life in U.S. Rivers and Streams

U.S. Geological Survey News Feed - September 11, 2014 - 10:30am
Summary: Levels of pesticides continue to be a concern for aquatic life in many of the Nation’s rivers and streams in agricultural and urban areas, according to a new USGS study spanning two decades (1992-2011)

Contact Information:

Ethan Alpern ( Phone: 703-648-4406 ); Wesley Stone ( Phone: 317-600-2786 );



Levels of pesticides continue to be a concern for aquatic life in many of the Nation’s rivers and streams in agricultural and urban areas, according to a new USGS study spanning two decades (1992-2011). Pesticide levels seldom exceeded human health benchmarks.

Over half a billion pounds of pesticides are used annually in the U.S. to increase crop production and reduce insect-borne disease, but some of these pesticides are occurring at concentrations that pose a concern for aquatic life.

High resolution image

The proportion of streams with one or more pesticides that exceeded an aquatic-life benchmark was similar between the two decades for streams and rivers draining agricultural and mixed-land use areas, but much greater during the 2002-2011 for streams draining urban areas.

Fipronil, an insecticide that disrupts the central nervous system of insects, was the pesticide most frequently found at levels of potential concern for aquatic organisms in urban streams during 2002-2011.

“The information gained through this important research is critical to the evaluation of the risks associated with existing levels of pesticides,” said William Werkheiser, USGS Associate Director for Water.

Since 1992, there have been widespread trends in concentrations of individual pesticides, some down and some up, mainly driven by shifts in pesticide use due to regulatory changes, market forces, and introduction of new pesticides. “Levels of diazinon, one of the most frequently detected insecticides during the 1990s, decreased from about 1997 through 2011 due to reduced agricultural use and the U.S. Environmental Protection Agency’s regulatory phase-out of urban uses,” said, Wesley Stone, USGS hydrologist.

The potential for adverse effects on aquatic life is likely underestimated in these results because resource constraints limited the scope of monitoring to less than half of the more than 400 pesticides currently used in agriculture each year and monitoring focused only on pesticides dissolved in water.

The USGS National Water-Quality Assessment Program is continually working to fill these data gaps by adding new pesticides that come into use, such as the neonicotinoid and pyrethroid insecticides, improving characterization of short-term acute exposures, and enhancing evaluations of sediment and other environmental media.

The study “Pesticides in U.S. Streams and Rivers:  Occurrence and trends during 1992-2011” is a feature article in the Environmental Science and Technology journal. The article and additional information including data, reports, and maps on pesticide status, trends, and use are available online.